home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_2 / 2-1-2.tut < prev    next >
Unknown  |  1996-07-25  |  12.3 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | d2 2f 00 00 78 01 00 00 |TUTOR 06|./..x...|
|00000010| 53 65 63 74 69 6f 6e 20 | 32 2e 31 20 20 4c 69 6e |Section |2.1 Lin|
|00000020| 65 73 20 69 6e 20 74 68 | 65 20 50 6c 61 6e 65 0d |es in th|e Plane.|
|00000030| 0a 00 0d 0b 00 0e 65 32 | 2d 31 2d 31 0e 47 75 69 |......e2|-1-1.Gui|
|00000040| 64 65 64 20 45 78 61 6d | 70 6c 65 20 20 31 0f 20 |ded Exam|ple 1. |
|00000050| 20 43 61 6c 63 75 6c 61 | 74 69 6e 67 20 74 68 65 | Calcula|ting the|
|00000060| 20 53 6c 6f 70 65 20 6f | 66 20 61 20 4c 69 6e 65 | Slope o|f a Line|
|00000070| 0d 0a 00 0e 65 32 2d 31 | 2d 32 0e 47 75 69 64 65 |....e2-1|-2.Guide|
|00000080| 64 20 45 78 61 6d 70 6c | 65 20 20 32 0f 20 20 46 |d Exampl|e 2. F|
|00000090| 69 6e 64 69 6e 67 20 74 | 68 65 20 53 6c 6f 70 65 |inding t|he Slope|
|000000a0| 20 6f 66 20 61 20 4c 69 | 6e 65 20 50 61 73 73 69 | of a Li|ne Passi|
|000000b0| 6e 67 20 54 68 72 6f 75 | 67 68 20 54 77 6f 20 50 |ng Throu|gh Two P|
|000000c0| 6f 69 6e 74 73 0d 0a 00 | 0e 65 32 2d 31 2d 33 0e |oints...|.e2-1-3.|
|000000d0| 47 75 69 64 65 64 20 45 | 78 61 6d 70 6c 65 20 20 |Guided E|xample |
|000000e0| 33 0f 20 20 55 73 69 6e | 67 20 74 68 65 20 50 6f |3. Usin|g the Po|
|000000f0| 69 6e 74 2d 53 6c 6f 70 | 65 20 46 6f 72 6d 20 6f |int-Slop|e Form o|
|00000100| 66 20 74 68 65 20 45 71 | 75 61 74 69 6f 6e 20 6f |f the Eq|uation o|
|00000110| 66 20 61 20 4c 69 6e 65 | 0d 0a 00 0e 65 32 2d 31 |f a Line|....e2-1|
|00000120| 2d 34 0e 47 75 69 64 65 | 64 20 45 78 61 6d 70 6c |-4.Guide|d Exampl|
|00000130| 65 20 20 34 0f 20 20 55 | 73 69 6e 67 20 74 68 65 |e 4. U|sing the|
|00000140| 20 49 6e 74 65 72 63 65 | 70 74 20 46 6f 72 6d 20 | Interce|pt Form |
|00000150| 6f 66 20 74 68 65 20 45 | 71 75 61 74 69 6f 6e 20 |of the E|quation |
|00000160| 6f 66 20 61 20 4c 69 6e | 65 0d 0a 00 0e 65 32 2d |of a Lin|e....e2-|
|00000170| 31 2d 35 0e 47 75 69 64 | 65 64 20 45 78 61 6d 70 |1-5.Guid|ed Examp|
|00000180| 6c 65 20 20 35 0f 20 20 | 44 65 74 65 72 6d 69 6e |le 5. |Determin|
|00000190| 69 6e 67 20 57 68 65 74 | 68 65 72 20 4c 69 6e 65 |ing Whet|her Line|
|000001a0| 73 20 61 72 65 20 50 61 | 72 61 6c 6c 65 6c 20 6f |s are Pa|rallel o|
|000001b0| 72 20 50 65 72 70 65 6e | 64 69 63 75 6c 61 72 0d |r Perpen|dicular.|
|000001c0| 0a 00 0e 65 32 2d 31 2d | 36 0e 47 75 69 64 65 64 |...e2-1-|6.Guided|
|000001d0| 20 45 78 61 6d 70 6c 65 | 20 20 36 0f 20 20 46 69 | Example| 6. Fi|
|000001e0| 6e 64 69 6e 67 20 50 61 | 72 61 6c 6c 65 6c 20 61 |nding Pa|rallel a|
|000001f0| 6e 64 20 50 65 72 70 65 | 6e 64 69 63 75 6c 61 72 |nd Perpe|ndicular|
|00000200| 20 4c 69 6e 65 73 0d 0a | 00 0e 65 32 2d 31 2d 37 | Lines..|..e2-1-7|
|00000210| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|00000220| 20 37 0f 20 20 41 6e 20 | 41 70 70 6c 69 63 61 74 | 7. An |Applicat|
|00000230| 69 6f 6e 3a 20 53 61 6c | 61 72 79 20 61 6e 64 20 |ion: Sal|ary and |
|00000240| 43 6f 6d 6d 69 73 73 69 | 6f 6e 0d 0a 00 0e 69 32 |Commissi|on....i2|
|00000250| 2d 31 2d 31 0e 49 6e 74 | 65 67 72 61 74 65 64 20 |-1-1.Int|egrated |
|00000260| 45 78 61 6d 70 6c 65 20 | 20 31 0f 20 20 55 73 69 |Example | 1. Usi|
|00000270| 6e 67 20 61 20 50 6f 69 | 6e 74 20 61 6e 64 20 74 |ng a Poi|nt and t|
|00000280| 68 65 20 53 6c 6f 70 65 | 20 74 6f 20 46 69 6e 64 |he Slope| to Find|
|00000290| 20 4f 74 68 65 72 20 50 | 6f 69 6e 74 73 20 6f 6e | Other P|oints on|
|000002a0| 20 61 20 4c 69 6e 65 0d | 0a 00 0e 69 32 2d 31 2d | a Line.|...i2-1-|
|000002b0| 32 0e 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |2.Integr|ated Exa|
|000002c0| 6d 70 6c 65 20 20 32 0f | 20 20 55 73 69 6e 67 20 |mple 2.| Using |
|000002d0| 74 68 65 20 53 6c 6f 70 | 65 20 61 6e 64 20 11 33 |the Slop|e and .3|
|000002e0| 79 11 31 2d 49 6e 74 65 | 72 63 65 70 74 20 74 6f |y.1-Inte|rcept to|
|000002f0| 20 53 6b 65 74 63 68 20 | 61 20 4c 69 6e 65 0d 0a | Sketch |a Line..|
|00000300| 00 0e 69 32 2d 31 2d 33 | 0e 49 6e 74 65 67 72 61 |..i2-1-3|.Integra|
|00000310| 74 65 64 20 45 78 61 6d | 70 6c 65 20 20 33 0f 20 |ted Exam|ple 3. |
|00000320| 20 55 73 69 6e 67 20 74 | 68 65 20 53 6c 6f 70 65 | Using t|he Slope|
|00000330| 20 61 6e 64 20 11 33 79 | 11 31 2d 49 6e 74 65 72 | and .3y|.1-Inter|
|00000340| 63 65 70 74 20 74 6f 20 | 53 6b 65 74 63 68 20 61 |cept to |Sketch a|
|00000350| 20 4c 69 6e 65 0d 0a 00 | 0e 69 32 2d 31 2d 34 0e | Line...|.i2-1-4.|
|00000360| 49 6e 74 65 67 72 61 74 | 65 64 20 45 78 61 6d 70 |Integrat|ed Examp|
|00000370| 6c 65 20 20 34 0f 20 20 | 46 69 6e 64 69 6e 67 20 |le 4. |Finding |
|00000380| 61 6e 20 45 71 75 61 74 | 69 6f 6e 20 6f 66 20 61 |an Equat|ion of a|
|00000390| 20 4c 69 6e 65 20 50 61 | 73 73 69 6e 67 20 54 68 | Line Pa|ssing Th|
|000003a0| 72 6f 75 67 68 20 54 77 | 6f 20 50 6f 69 6e 74 73 |rough Tw|o Points|
|000003b0| 0d 0a 00 0e 69 32 2d 31 | 2d 35 0e 49 6e 74 65 67 |....i2-1|-5.Integ|
|000003c0| 72 61 74 65 64 20 45 78 | 61 6d 70 6c 65 20 20 35 |rated Ex|ample 5|
|000003d0| 0f 20 20 46 69 6e 64 69 | 6e 67 20 61 6e 20 45 71 |. Findi|ng an Eq|
|000003e0| 75 61 74 69 6f 6e 20 6f | 66 20 61 20 4c 69 6e 65 |uation o|f a Line|
|000003f0| 20 50 61 73 73 69 6e 67 | 20 54 68 72 6f 75 67 68 | Passing| Through|
|00000400| 20 54 77 6f 20 50 6f 69 | 6e 74 73 0d 0a 00 0e 69 | Two Poi|nts....i|
|00000410| 32 2d 31 2d 36 0e 49 6e | 74 65 67 72 61 74 65 64 |2-1-6.In|tegrated|
|00000420| 20 45 78 61 6d 70 6c 65 | 20 20 36 0f 20 20 53 6b | Example| 6. Sk|
|00000430| 65 74 63 68 69 6e 67 20 | 74 68 65 20 47 72 61 70 |etching |the Grap|
|00000440| 68 20 6f 66 20 61 20 4c | 69 6e 65 0d 0a 00 53 65 |h of a L|ine...Se|
|00000450| 63 74 69 6f 6e 20 32 2e | 31 20 20 4c 69 6e 65 73 |ction 2.|1 Lines|
|00000460| 20 69 6e 20 74 68 65 20 | 50 6c 61 6e 65 0d 0b 00 | in the |Plane...|
|00000470| 45 73 74 69 6d 61 74 65 | 20 74 68 65 20 73 6c 6f |Estimate| the slo|
|00000480| 70 65 20 6f 66 20 74 68 | 65 20 67 69 76 65 6e 20 |pe of th|e given |
|00000490| 6c 69 6e 65 20 66 72 6f | 6d 0d 0a 00 69 74 73 20 |line fro|m...its |
|000004a0| 67 72 61 70 68 2e 20 20 | 20 20 20 20 20 20 20 20 |graph. | |
|000004b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000004c0| 20 20 20 20 20 20 20 20 | 20 20 20 14 6b 33 2d 33 | | .k3-3|
|000004d0| 2d 31 61 2e 6d 14 34 35 | 14 30 14 34 30 14 31 31 |-1a.m.45|.0.40.11|
|000004e0| 14 0d 0a 00 0d 0a 00 13 | 12 31 53 4f 4c 55 54 49 |........|.1SOLUTI|
|000004f0| 4f 4e 12 30 0d 0a 00 0d | 0b 00 52 65 6d 65 6d 62 |ON.0....|..Rememb|
|00000500| 65 72 2c 20 74 68 65 20 | 73 6c 6f 70 65 20 6f 66 |er, the |slope of|
|00000510| 20 61 20 6e 6f 6e 76 65 | 72 74 69 63 61 6c 20 6c | a nonve|rtical l|
|00000520| 69 6e 65 20 69 73 0d 0a | 00 74 68 65 20 6e 75 6d |ine is..|.the num|
|00000530| 62 65 72 20 6f 66 20 75 | 6e 69 74 73 20 74 68 65 |ber of u|nits the|
|00000540| 20 6c 69 6e 65 20 72 69 | 73 65 73 20 6f 72 20 66 | line ri|ses or f|
|00000550| 61 6c 6c 73 0d 0a 00 76 | 65 72 74 69 63 61 6c 6c |alls...v|erticall|
|00000560| 79 20 66 6f 72 20 65 61 | 63 68 20 75 6e 69 74 20 |y for ea|ch unit |
|00000570| 63 68 61 6e 67 65 20 66 | 72 6f 6d 20 6c 65 66 74 |change f|rom left|
|00000580| 20 74 6f 20 0d 0a 00 72 | 69 67 68 74 2e 13 0d 0a | to ...r|ight....|
|00000590| 00 0d 0a 00 0d 0a 00 0d | 0b 00 49 6e 20 74 68 69 |........|..In thi|
|000005a0| 73 20 63 61 73 65 2c 20 | 74 68 65 20 6c 69 6e 65 |s case, |the line|
|000005b0| 20 72 69 73 65 73 20 66 | 6f 75 72 20 75 6e 69 74 | rises f|our unit|
|000005c0| 73 20 66 6f 72 20 65 61 | 63 68 20 75 6e 69 74 20 |s for ea|ch unit |
|000005d0| 6f 66 20 68 6f 72 69 7a | 6f 6e 74 61 6c 20 63 68 |of horiz|ontal ch|
|000005e0| 61 6e 67 65 20 0d 0a 00 | 66 72 6f 6d 20 6c 65 66 |ange ...|from lef|
|000005f0| 74 20 74 6f 20 72 69 67 | 68 74 20 28 73 65 65 20 |t to rig|ht (see |
|00000600| 74 68 65 20 67 72 61 70 | 68 29 2e 20 20 14 6b 33 |the grap|h). .k3|
|00000610| 2d 33 2d 31 62 2e 6d 14 | 34 35 14 30 14 34 30 14 |-3-1b.m.|45.0.40.|
|00000620| 31 31 14 13 0d 0a 00 0d | 0b 00 54 68 65 72 65 66 |11......|..Theref|
|00000630| 6f 72 65 2c 20 77 65 20 | 73 61 79 20 74 68 61 74 |ore, we |say that|
|00000640| 20 74 68 65 20 6c 69 6e | 65 20 68 61 73 20 61 20 | the lin|e has a |
|00000650| 73 6c 6f 70 65 20 6f 66 | 20 11 33 6d 20 11 31 3d |slope of| .3m .1=|
|00000660| 20 34 2e 0d 0a 00 53 65 | 63 74 69 6f 6e 20 32 2e | 4....Se|ction 2.|
|00000670| 31 20 20 4c 69 6e 65 73 | 20 69 6e 20 74 68 65 20 |1 Lines| in the |
|00000680| 50 6c 61 6e 65 0d 0b 00 | 50 6c 6f 74 20 74 68 65 |Plane...|Plot the|
|00000690| 20 70 6f 69 6e 74 73 20 | 28 33 2c 20 31 29 20 61 | points |(3, 1) a|
|000006a0| 6e 64 20 28 2d 32 2c 20 | 2d 34 29 20 61 6e 64 20 |nd (-2, |-4) and |
|000006b0| 66 69 6e 64 20 74 68 65 | 20 73 6c 6f 70 65 20 6f |find the| slope o|
|000006c0| 66 20 74 68 65 20 6c 69 | 6e 65 20 70 61 73 73 69 |f the li|ne passi|
|000006d0| 6e 67 0d 0a 00 74 68 72 | 6f 75 67 68 20 74 68 65 |ng...thr|ough the|
|000006e0| 6d 2e 0d 0a 00 0d 0b 00 | 13 12 31 53 4f 4c 55 54 |m.......|..1SOLUT|
|000006f0| 49 4f 4e 12 30 0d 0a 00 | 0d 0b 00 57 65 20 62 65 |ION.0...|...We be|
|00000700| 67 69 6e 20 62 79 20 70 | 6c 6f 74 74 69 6e 67 20 |gin by p|lotting |
|00000710| 74 68 65 20 70 6f 69 6e | 74 73 20 61 73 20 73 68 |the poin|ts as sh|
|00000720| 6f 77 6e 20 61 74 20 0d | 0a 00 74 68 65 20 72 69 |own at .|..the ri|
|00000730| 67 68 74 2e 20 20 20 20 | 20 20 20 20 20 20 20 20 |ght. | |
|00000740| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000750| 20 20 20 20 20 20 20 20 | 20 20 20 20 14 76 6b 33 | | .vk3|
|00000760| 2d 33 2d 32 61 2e 6d 14 | 35 30 14 34 14 34 30 14 |-3-2a.m.|50.4.40.|
|00000770| 31 30 14 14 76 6b 33 2d | 33 2d 32 62 2e 6d 14 35 |10..vk3-|3-2b.m.5|
|00000780| 30 14 34 14 34 30 14 31 | 30 14 13 0d 0a 00 0d 0b |0.4.40.1|0.......|
|00000790| 00 4e 6f 77 2c 20 74 6f | 20 64 65 74 65 72 6d 69 |.Now, to| determi|
|000007a0| 6e 65 20 74 68 65 20 73 | 6c 6f 70 65 20 6f 66 20 |ne the s|lope of |
|000007b0| 74 68 65 20 6c 69 6e 65 | 20 70 61 73 73 69 6e 67 |the line| passing|
|000007c0| 0d 0a 00 74 68 72 6f 75 | 67 68 20 74 68 65 73 65 |...throu|gh these|
|000007d0| 20 70 6f 69 6e 74 73 20 | 77 65 20 75 73 65 20 74 | points |we use t|
|000007e0| 68 65 20 66 6f 72 6d 75 | 6c 61 0d 0a 00 20 20 20 |he formu|la... |
|000007f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|00000800| 79 20 20 11 31 2d 20 11 | 33 79 0d 0b 00 20 20 20 |y .1- .|3y... |
|00000810| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000820| 32 32 20 20 20 20 31 0d | 0b 00 20 20 20 20 20 20 |22 1.|.. |
|00000830| 20 20 20 20 20 20 20 11 | 33 6d 20 11 31 3d 20 11 | .|3m .1= .|
|00000840| 34 32 32 32 32 32 32 32 | 11 31 2e 0d 0b 00 20 20 |42222222|.1.... |
|00000850| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000860| 33 78 20 20 11 31 2d 20 | 11 33 78 0d 0b 00 20 20 |3x .1- |.3x... |
|00000870| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000880| 11 32 32 20 20 20 20 31 | 20 20 11 31 13 0d 0a 00 |.22 1| .1....|
|00000890| 0d 0b 00 49 66 20 77 65 | 20 6c 65 74 20 28 11 33 |...If we| let (.3|
|000008a0| 78 20 11 31 2c 20 11 33 | 79 20 11 31 29 20 3d 20 |x .1, .3|y .1) = |
|000008b0| 28 33 2c 20 31 29 20 61 | 6e 64 20 28 11 33 78 20 |(3, 1) a|nd (.3x |
|000008c0| 11 31 2c 20 11 33 79 20 | 11 31 29 20 3d 20 28 2d |.1, .3y |.1) = (-|
|000008d0| 32 2c 20 2d 34 29 2c 20 | 77 65 20 6f 62 74 61 69 |2, -4), |we obtai|
|000008e0| 6e 20 74 68 65 20 66 6f | 6c 6c 6f 77 69 6e 67 2e |n the fo|llowing.|
|000008f0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |... | .|
|00000900| 32 31 20 20 20 31 20 20 | 20 20 20 20 20 20 20 20 |21 1 | |
|00000910| 20 20 20 20 20 20 20 32 | 20 20 20 32 0d 0a 00 20 | 2| 2... |
|00000920| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000930| 20 20 20 20 20 20 20 20 | 11 31 2d 34 20 2d 20 31 | |.1-4 - 1|
|00000940| 20 20 20 2d 35 0d 0b 00 | 20 20 20 20 20 20 20 20 | -5...| |
|00000950| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 6d | | .3m|
|00000960| 20 11 31 3d 20 11 34 32 | 32 32 32 32 32 20 11 31 | .1= .42|22222 .1|
|00000970| 3d 20 11 34 32 32 20 11 | 31 3d 20 31 0d 0b 00 20 |= .422 .|1= 1... |
|00000980| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000990| 20 20 20 20 20 20 20 20 | 2d 32 20 2d 20 33 20 20 | |-2 - 3 |
|000009a0| 20 2d 35 20 20 20 20 13 | 0d 0a 00 0d 0b 00 54 72 | -5 .|......Tr|
|000009b0| 79 20 6c 61 62 65 6c 69 | 6e 67 20 28 33 2c 20 31 |y labeli|ng (3, 1|
|000009c0| 29 20 61 73 20 28 11 33 | 78 20 11 31 2c 20 11 33 |) as (.3|x .1, .3|
|000009d0| 79 20 11 31 29 20 61 6e | 64 20 28 2d 32 2c 20 2d |y .1) an|d (-2, -|
|000009e0| 34 29 20 61 73 20 28 11 | 33 78 20 11 31 2c 20 11 |4) as (.|3x .1, .|
|000009f0| 33 79 20 11 31 29 2e 20 | 20 59 6f 75 20 73 68 6f |3y .1). | You sho|
|00000a00| 75 6c 64 20 6f 62 74 61 | 69 6e 0d 0b 00 20 20 20 |uld obta|in... |
|00000a10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a20| 20 20 20 20 20 20 11 32 | 32 20 20 20 32 20 20 20 | .2|2 2 |
|00000a30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a40| 20 31 20 20 20 31 0d 0a | 00 11 31 74 68 65 20 73 | 1 1..|..1the s|
|00000a50| 61 6d 65 20 61 6e 73 77 | 65 72 2e 0d 0a 00 53 65 |ame answ|er....Se|
|00000a60| 63 74 69 6f 6e 20 32 2e | 31 20 20 4c 69 6e 65 73 |ction 2.|1 Lines|
|00000a70| 20 69 6e 20 74 68 65 20 | 50 6c 61 6e 65 0d 0b 00 | in the |Plane...|
|00000a80| 46 69 6e 64 20 61 6e 20 | 65 71 75 61 74 69 6f 6e |Find an |equation|
|00000a90| 20 6f 66 20 74 68 65 20 | 6c 69 6e 65 20 74 68 61 | of the |line tha|
|00000aa0| 74 20 70 61 73 73 65 73 | 20 74 68 72 6f 75 67 68 |t passes| through|
|00000ab0| 20 74 68 65 20 70 6f 69 | 6e 74 20 28 32 2c 20 35 | the poi|nt (2, 5|
|00000ac0| 29 20 61 6e 64 20 68 61 | 73 20 61 20 0d 0a 00 73 |) and ha|s a ...s|
|00000ad0| 6c 6f 70 65 20 6f 66 20 | 2d 31 2f 33 2e 20 20 54 |lope of |-1/3. T|
|00000ae0| 68 65 6e 20 73 6b 65 74 | 63 68 20 74 68 65 20 67 |hen sket|ch the g|
|00000af0| 72 61 70 68 20 6f 66 20 | 74 68 65 20 6c 69 6e 65 |raph of |the line|
|00000b00| 2e 0d 0a 00 0d 0b 00 13 | 12 31 53 4f 4c 55 54 49 |........|.1SOLUTI|
|00000b10| 4f 4e 12 30 0d 0a 00 0d | 0b 00 55 73 69 6e 67 20 |ON.0....|..Using |
|00000b20| 74 68 65 20 70 6f 69 6e | 74 2d 73 6c 6f 70 65 20 |the poin|t-slope |
|00000b30| 66 6f 72 6d 20 6f 66 20 | 74 68 65 20 65 71 75 61 |form of |the equa|
|00000b40| 74 69 6f 6e 20 6f 66 20 | 61 20 6c 69 6e 65 2c 20 |tion of |a line, |
|00000b50| 77 65 20 68 61 76 65 20 | 74 68 65 20 66 6f 6c 6c |we have |the foll|
|00000b60| 6f 77 69 6e 67 2e 0d 0a | 00 0d 0b 00 20 20 20 20 |owing...|.... |
|00000b70| 20 11 33 79 20 11 31 2d | 20 11 33 79 20 20 11 31 | .3y .1-| .3y .1|
|00000b80| 3d 20 11 33 6d 11 31 28 | 11 33 78 20 11 31 2d 20 |= .3m.1(|.3x .1- |
|00000b90| 11 33 78 20 11 31 29 20 | 20 20 20 20 20 20 20 20 |.3x .1) | |
|00000ba0| 20 20 11 32 12 31 50 6f | 69 6e 74 2d 73 6c 6f 70 | .2.1Po|int-slop|
|00000bb0| 65 20 66 6f 72 6d 12 30 | 0d 0b 00 20 20 20 20 20 |e form.0|... |
|00000bc0| 20 20 20 20 20 31 20 20 | 20 20 20 20 20 20 20 20 | 1 | |
|00000bd0| 31 13 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |1.... | |
|00000be0| 20 20 20 20 11 31 31 0d | 0b 00 20 20 20 20 20 20 | .11.|.. |
|00000bf0| 11 33 79 20 11 31 2d 20 | 35 20 3d 20 2d 11 34 32 |.3y .1- |5 = -.42|
|00000c00| 11 31 28 11 33 78 20 11 | 31 2d 20 32 29 20 20 20 |.1(.3x .|1- 2) |
|00000c10| 20 20 20 20 20 20 20 20 | 11 32 12 31 53 75 62 73 | |.2.1Subs|
|00000c20| 74 69 74 75 74 65 20 6d | 3d 2d 31 2f 33 20 61 6e |titute m|=-1/3 an|
|00000c30| 64 20 28 78 20 2c 20 79 | 20 29 3d 28 32 2c 20 35 |d (x , y| )=(2, 5|
|00000c40| 29 12 30 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |).0... | |
|00000c50| 20 20 20 20 20 11 31 33 | 20 20 20 20 20 20 20 20 | .13| |
|00000c60| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 20 20 | | .2.1 |
|00000c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c80| 20 20 20 20 20 20 31 20 | 20 20 31 20 20 20 20 20 | 1 | 1 |
|00000c90| 20 20 20 12 30 13 0d 0a | 00 20 20 20 20 20 20 20 | .0...|. |
|00000ca0| 20 20 20 20 20 20 20 20 | 11 31 31 20 20 20 20 32 | |.11 2|
|00000cb0| 0d 0b 00 20 20 20 20 20 | 20 11 33 79 20 11 31 2d |... | .3y .1-|
|00000cc0| 20 35 20 3d 20 2d 11 34 | 32 11 33 78 20 11 31 2b | 5 = -.4|2.3x .1+|
|00000cd0| 20 11 34 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | .42... | |
|00000ce0| 20 20 20 20 20 20 11 31 | 33 20 20 20 20 33 13 0d | .1|3 3..|
|00000cf0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000d00| 20 31 20 20 20 20 31 37 | 0d 0b 00 20 20 20 20 20 | 1 17|... |
|00000d10| 20 20 20 20 20 11 33 79 | 20 11 31 3d 20 2d 11 34 | .3y| .1= -.4|
|00000d20| 32 11 33 78 20 11 31 2b | 20 11 34 32 32 20 20 20 |2.3x .1+| .422 |
|00000d30| 20 20 20 20 20 20 20 20 | 20 11 31 12 31 11 32 45 | | .1.1.2E|
|00000d40| 71 75 61 74 69 6f 6e 20 | 69 6e 20 73 6c 6f 70 65 |quation |in slope|
|00000d50| 2d 69 6e 74 65 72 63 65 | 70 74 20 66 6f 72 6d 11 |-interce|pt form.|
|00000d60| 31 12 30 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |1.0... | |
|00000d70| 20 20 20 20 20 33 20 20 | 20 20 20 33 20 20 20 20 | 3 | 3 |
|00000d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000da0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 13 0d | | ..|
|00000db0| 0a 00 0d 0b 00 46 72 6f | 6d 20 74 68 69 73 20 66 |.....Fro|m this f|
|00000dc0| 6f 72 6d 2c 20 77 65 20 | 73 65 65 20 74 68 61 74 |orm, we |see that|
|00000dd0| 20 74 68 65 20 11 33 79 | 11 31 2d 69 6e 74 65 72 | the .3y|.1-inter|
|00000de0| 63 65 70 74 20 6f 63 63 | 75 72 73 20 61 74 20 28 |cept occ|urs at (|
|00000df0| 30 2c 20 31 37 2f 33 29 | 2e 13 0d 0a 00 0d 0b 00 |0, 17/3)|........|
|00000e00| 55 73 69 6e 67 20 74 68 | 65 20 11 33 79 11 31 2d |Using th|e .3y.1-|
|00000e10| 69 6e 74 65 72 63 65 70 | 74 20 61 6e 64 20 74 68 |intercep|t and th|
|00000e20| 65 20 70 6f 69 6e 74 20 | 28 32 2c 20 35 29 2c 20 |e point |(2, 5), |
|00000e30| 77 65 20 73 6b 65 74 63 | 68 20 74 68 65 20 67 72 |we sketc|h the gr|
|00000e40| 61 70 68 20 6f 66 20 74 | 68 65 20 6c 69 6e 65 0d |aph of t|he line.|
|00000e50| 0a 00 61 73 20 73 68 6f | 77 6e 20 6f 6e 20 74 68 |..as sho|wn on th|
|00000e60| 65 20 6e 65 78 74 20 70 | 61 67 65 2e 00 0c 0d 0a |e next p|age.....|
|00000e70| 00 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00000e80| 20 20 20 20 20 20 20 20 | 20 20 20 20 14 6b 33 2d | | .k3-|
|00000e90| 33 2d 39 2e 6d 14 32 37 | 14 34 14 35 30 14 38 14 |3-9.m.27|.4.50.8.|
|00000ea0| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 32 2e 31 20 20 |...Secti|on 2.1 |
|00000eb0| 4c 69 6e 65 73 20 69 6e | 20 74 68 65 20 50 6c 61 |Lines in| the Pla|
|00000ec0| 6e 65 0d 0b 00 54 68 65 | 20 69 6e 74 65 72 63 65 |ne...The| interce|
|00000ed0| 70 74 20 66 6f 72 6d 20 | 6f 66 20 74 68 65 20 65 |pt form |of the e|
|00000ee0| 71 75 61 74 69 6f 6e 20 | 6f 66 20 61 20 6c 69 6e |quation |of a lin|
|00000ef0| 65 20 77 69 74 68 20 69 | 6e 74 65 72 63 65 70 74 |e with i|ntercept|
|00000f00| 73 20 28 11 33 61 11 31 | 2c 20 30 29 20 61 6e 64 |s (.3a.1|, 0) and|
|00000f10| 20 28 30 2c 20 11 33 62 | 11 31 29 0d 0a 00 69 73 | (0, .3b|.1)...is|
|00000f20| 0d 0b 00 20 20 20 20 20 | 11 33 78 20 20 20 79 0d |... |.3x y.|
|00000f30| 0b 00 20 20 20 20 20 11 | 34 32 20 11 31 2b 20 11 |.. .|42 .1+ .|
|00000f40| 34 32 20 11 31 3d 20 31 | 2c 20 20 20 20 20 11 33 |42 .1= 1|, .3|
|00000f50| 61 20 11 34 3d 20 11 31 | 30 2c 20 11 33 62 20 11 |a .4= .1|0, .3b .|
|00000f60| 34 3d 20 11 31 30 2e 0d | 0b 00 20 20 20 20 20 11 |4= .10..|.. .|
|00000f70| 33 61 20 20 20 62 0d 0a | 00 11 31 55 73 65 20 74 |3a b..|..1Use t|
|00000f80| 68 69 73 20 66 6f 72 6d | 20 74 6f 20 66 69 6e 64 |his form| to find|
|00000f90| 20 61 6e 20 65 71 75 61 | 74 69 6f 6e 20 66 6f 72 | an equa|tion for|
|00000fa0| 20 74 68 65 20 6c 69 6e | 65 20 77 68 6f 73 65 20 | the lin|e whose |
|00000fb0| 69 6e 74 65 72 63 65 70 | 74 73 20 61 72 65 20 28 |intercep|ts are (|
|00000fc0| 32 2c 20 30 29 0d 0a 00 | 61 6e 64 20 28 30 2c 20 |2, 0)...|and (0, |
|00000fd0| 2d 33 29 2e 0d 0a 00 0d | 0b 00 13 12 31 53 4f 4c |-3).....|....1SOL|
|00000fe0| 55 54 49 4f 4e 12 30 0d | 0a 00 4c 65 74 74 69 6e |UTION.0.|..Lettin|
|00000ff0| 67 20 11 33 61 20 11 31 | 3d 20 32 20 61 6e 64 20 |g .3a .1|= 2 and |
|00001000| 11 33 62 20 11 31 3d 20 | 2d 33 2c 20 77 65 20 68 |.3b .1= |-3, we h|
|00001010| 61 76 65 20 74 68 65 20 | 66 6f 6c 6c 6f 77 69 6e |ave the |followin|
|00001020| 67 2e 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |g.......| |
|00001030| 20 11 33 78 20 20 20 20 | 79 0d 0b 00 20 20 20 20 | .3x |y... |
|00001040| 20 20 20 20 20 11 34 32 | 20 11 31 2b 20 11 34 32 | .42| .1+ .42|
|00001050| 32 20 11 31 3d 20 31 20 | 20 20 20 20 20 20 20 20 |2 .1= 1 | |
|00001060| 20 20 20 20 11 32 12 31 | 54 77 6f 2d 69 6e 74 65 | .2.1|Two-inte|
|00001070| 72 63 65 70 74 20 66 6f | 72 6d 12 30 0d 0b 00 20 |rcept fo|rm.0... |
|00001080| 20 20 20 20 20 20 20 20 | 11 31 32 20 20 20 2d 33 | |.12 -3|
|00001090| 13 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 33 |....... | 3|
|000010a0| 11 33 78 20 11 31 2d 20 | 32 11 33 79 20 11 31 3d |.3x .1- |2.3y .1=|
|000010b0| 20 36 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | 6 | .|
|000010c0| 32 12 31 4d 75 6c 74 69 | 70 6c 79 20 62 6f 74 68 |2.1Multi|ply both|
|000010d0| 20 73 69 64 65 73 20 62 | 79 20 36 12 30 11 31 13 | sides b|y 6.0.1.|
|000010e0| 0d 0a 00 0d 0a 00 20 20 | 20 20 33 11 33 78 20 11 |...... | 3.3x .|
|000010f0| 31 2d 20 32 11 33 79 20 | 11 31 2d 20 36 20 3d 20 |1- 2.3y |.1- 6 = |
|00001100| 30 20 20 20 20 20 20 20 | 20 20 20 20 20 20 12 31 |0 | .1|
|00001110| 11 32 47 65 6e 65 72 61 | 6c 20 66 6f 72 6d 11 31 |.2Genera|l form.1|
|00001120| 12 30 0d 0a 00 53 65 63 | 74 69 6f 6e 20 32 2e 31 |.0...Sec|tion 2.1|
|00001130| 20 20 4c 69 6e 65 73 20 | 69 6e 20 74 68 65 20 50 | Lines |in the P|
|00001140| 6c 61 6e 65 0d 0b 00 44 | 65 74 65 72 6d 69 6e 65 |lane...D|etermine|
|00001150| 20 77 68 65 74 68 65 72 | 20 74 68 65 20 6c 69 6e | whether| the lin|
|00001160| 65 73 20 11 33 4c 20 20 | 11 31 61 6e 64 20 11 33 |es .3L |.1and .3|
|00001170| 4c 20 20 11 31 70 61 73 | 73 69 6e 67 20 74 68 72 |L .1pas|sing thr|
|00001180| 6f 75 67 68 20 74 68 65 | 20 67 69 76 65 6e 20 70 |ough the| given p|
|00001190| 6f 69 6e 74 73 20 61 72 | 65 0d 0b 00 20 20 20 20 |oints ar|e... |
|000011a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011b0| 20 20 20 20 20 20 20 20 | 20 11 32 31 20 20 20 20 | | .21 |
|000011c0| 20 20 32 0d 0a 00 11 31 | 70 61 72 61 6c 6c 65 6c | 2....1|parallel|
|000011d0| 2c 20 70 65 72 70 65 6e | 64 69 63 75 6c 61 72 2c |, perpen|dicular,|
|000011e0| 20 6f 72 20 6e 65 69 74 | 68 65 72 2e 0d 0a 00 0d | or neit|her.....|
|000011f0| 0b 00 20 20 20 20 20 20 | 20 20 11 33 4c 20 11 31 |.. | .3L .1|
|00001200| 3a 20 28 34 2c 20 32 29 | 2c 20 28 2d 32 2c 20 31 |: (4, 2)|, (-2, 1|
|00001210| 2f 32 29 20 20 20 20 20 | 20 20 20 20 11 33 4c 20 |/2) | .3L |
|00001220| 11 31 3a 20 28 30 2c 20 | 2d 37 29 2c 20 28 2d 32 |.1: (0, |-7), (-2|
|00001230| 2c 20 31 29 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |, 1)... | |
|00001240| 11 32 31 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.21 | |
|00001250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001260| 32 0d 0a 00 0d 0b 00 11 | 31 13 12 31 53 4f 4c 55 |2.......|1..1SOLU|
|00001270| 54 49 4f 4e 12 30 0d 0a | 00 57 65 20 62 65 67 69 |TION.0..|.We begi|
|00001280| 6e 20 62 79 20 63 61 6c | 63 75 6c 61 74 69 6e 67 |n by cal|culating|
|00001290| 20 74 68 65 20 73 6c 6f | 70 65 20 6f 66 20 65 61 | the slo|pe of ea|
|000012a0| 63 68 20 6c 69 6e 65 2e | 13 0d 0a 00 20 20 20 20 |ch line.|.... |
|000012b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012c0| 20 20 20 20 20 20 20 31 | 20 20 20 20 20 20 20 20 | 1| |
|000012d0| 33 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |3... | |
|000012e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000012f0| 34 32 20 11 31 2d 20 32 | 20 20 20 2d 11 34 32 0d |42 .1- 2| -.42.|
|00001300| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001310| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 32 | | .12|
|00001320| 20 20 20 20 20 20 20 20 | 32 20 20 20 20 31 0d 0b | |2 1..|
|00001330| 00 20 20 20 20 20 20 20 | 11 33 4c 20 20 20 20 20 |. |.3L |
|00001340| 11 34 35 35 35 36 20 20 | 20 20 11 33 6d 20 20 11 |.45556 | .3m .|
|00001350| 31 3d 20 11 34 32 32 32 | 32 32 32 20 11 31 3d 20 |1= .4222|222 .1= |
|00001360| 11 34 32 32 32 20 11 31 | 3d 20 11 34 32 0d 0b 00 |.4222 .1|= .42...|
|00001370| 20 20 20 20 20 20 20 20 | 11 32 31 20 20 20 20 20 | |.21 |
|00001380| 20 20 20 20 20 20 20 20 | 31 20 20 20 11 31 2d 32 | |1 .1-2|
|00001390| 20 2d 20 34 20 20 20 2d | 36 20 20 20 20 34 13 0d | - 4 -|6 4..|
|000013a0| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|000013b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013c0| 31 20 2b 20 37 20 20 20 | 20 38 0d 0b 00 20 20 20 |1 + 7 | 8... |
|000013d0| 20 20 20 20 11 33 4c 20 | 20 20 20 20 11 34 35 35 | .3L | .455|
|000013e0| 35 36 20 20 20 20 11 33 | 6d 20 20 11 31 3d 20 11 |56 .3|m .1= .|
|000013f0| 34 32 32 32 32 32 32 20 | 11 31 3d 20 11 34 32 32 |4222222 |.1= .422|
|00001400| 20 11 31 3d 20 2d 34 0d | 0b 00 20 20 20 20 20 20 | .1= -4.|.. |
|00001410| 20 20 11 32 32 20 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00001420| 20 20 32 20 20 20 11 31 | 2d 32 20 2d 20 30 20 20 | 2 .1|-2 - 0 |
|00001430| 20 2d 32 20 20 20 20 20 | 13 0d 0a 00 0d 0b 00 42 | -2 |.......B|
|00001440| 65 63 61 75 73 65 20 74 | 68 65 20 73 6c 6f 70 65 |ecause t|he slope|
|00001450| 20 6f 66 20 11 33 4c 20 | 20 11 31 69 73 20 74 68 | of .3L | .1is th|
|00001460| 65 20 6e 65 67 61 74 69 | 76 65 20 72 65 63 69 70 |e negati|ve recip|
|00001470| 72 6f 63 61 6c 20 6f 66 | 20 74 68 65 20 73 6c 6f |rocal of| the slo|
|00001480| 70 65 20 6f 66 20 11 33 | 4c 20 11 31 2c 20 77 65 |pe of .3|L .1, we|
|00001490| 20 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 | ... | |
|000014a0| 20 20 20 20 20 20 20 20 | 20 20 11 32 31 20 20 20 | | .21 |
|000014b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014d0| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0a 00 11 31 | | 2....1|
|000014e0| 63 6f 6e 63 6c 75 64 65 | 20 74 68 61 74 20 74 68 |conclude| that th|
|000014f0| 65 20 74 77 6f 20 6c 69 | 6e 65 73 20 61 72 65 20 |e two li|nes are |
|00001500| 70 65 72 70 65 6e 64 69 | 63 75 6c 61 72 2e 0d 0a |perpendi|cular...|
|00001510| 00 53 65 63 74 69 6f 6e | 20 32 2e 31 20 20 4c 69 |.Section| 2.1 Li|
|00001520| 6e 65 73 20 69 6e 20 74 | 68 65 20 50 6c 61 6e 65 |nes in t|he Plane|
|00001530| 0d 0b 00 57 72 69 74 65 | 20 61 6e 20 65 71 75 61 |...Write| an equa|
|00001540| 74 69 6f 6e 20 6f 66 20 | 74 68 65 20 6c 69 6e 65 |tion of |the line|
|00001550| 20 74 68 72 6f 75 67 68 | 20 74 68 65 20 70 6f 69 | through| the poi|
|00001560| 6e 74 20 28 31 2c 20 2d | 32 29 20 28 61 29 20 70 |nt (1, -|2) (a) p|
|00001570| 61 72 61 6c 6c 65 6c 20 | 74 6f 20 74 68 65 0d 0a |arallel |to the..|
|00001580| 00 6c 69 6e 65 20 33 11 | 33 78 20 11 31 2b 20 32 |.line 3.|3x .1+ 2|
|00001590| 11 33 79 20 11 31 3d 20 | 35 20 61 6e 64 20 28 62 |.3y .1= |5 and (b|
|000015a0| 29 20 70 65 72 70 65 6e | 64 69 63 75 6c 61 72 20 |) perpen|dicular |
|000015b0| 74 6f 20 74 68 65 20 6c | 69 6e 65 20 33 11 33 78 |to the l|ine 3.3x|
|000015c0| 20 11 31 2b 20 32 11 33 | 79 20 11 31 3d 20 35 2e | .1+ 2.3|y .1= 5.|
|000015d0| 0d 0a 00 0d 0b 00 13 12 | 31 53 4f 4c 55 54 49 4f |........|1SOLUTIO|
|000015e0| 4e 12 30 0d 0a 00 42 79 | 20 77 72 69 74 69 6e 67 |N.0...By| writing|
|000015f0| 20 74 68 65 20 67 69 76 | 65 6e 20 65 71 75 61 74 | the giv|en equat|
|00001600| 69 6f 6e 20 69 6e 20 73 | 6c 6f 70 65 2d 69 6e 74 |ion in s|lope-int|
|00001610| 65 72 63 65 70 74 20 66 | 6f 72 6d 20 77 65 20 63 |ercept f|orm we c|
|00001620| 61 6e 20 73 65 65 20 74 | 68 61 74 20 69 74 20 68 |an see t|hat it h|
|00001630| 61 73 0d 0a 00 61 20 73 | 6c 6f 70 65 20 6f 66 20 |as...a s|lope of |
|00001640| 11 33 6d 20 11 31 3d 20 | 2d 33 2f 32 2e 0d 0b 00 |.3m .1= |-3/2....|
|00001650| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001660| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001670| 20 20 33 20 20 20 20 35 | 0d 0b 00 20 20 20 20 20 | 3 5|... |
|00001680| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001690| 20 20 20 20 20 20 20 20 | 11 33 79 20 11 31 3d 20 | |.3y .1= |
|000016a0| 2d 11 34 32 11 33 78 20 | 11 31 2b 20 11 34 32 0d |-.42.3x |.1+ .42.|
|000016b0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000016c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016d0| 20 20 20 20 11 31 32 20 | 20 20 20 32 13 0d 0a 00 | .12 | 2....|
|000016e0| 61 29 20 20 54 68 65 20 | 6c 69 6e 65 20 74 68 61 |a) The |line tha|
|000016f0| 74 20 69 73 20 70 61 72 | 61 6c 6c 65 6c 20 74 6f |t is par|allel to|
|00001700| 20 74 68 69 73 20 77 69 | 6c 6c 20 68 61 76 65 20 | this wi|ll have |
|00001710| 74 68 65 20 73 61 6d 65 | 20 73 6c 6f 70 65 2e 13 |the same| slope..|
|00001720| 0d 0a 00 20 20 20 20 54 | 68 65 72 65 66 6f 72 65 |... T|herefore|
|00001730| 2c 20 75 73 69 6e 67 20 | 74 68 65 20 70 6f 69 6e |, using |the poin|
|00001740| 74 20 28 31 2c 20 2d 32 | 29 20 61 6e 64 20 11 33 |t (1, -2|) and .3|
|00001750| 6d 20 11 31 3d 20 2d 33 | 2f 32 2c 20 77 65 20 6f |m .1= -3|/2, we o|
|00001760| 62 74 61 69 6e 20 74 68 | 65 20 66 6f 6c 6c 6f 77 |btain th|e follow|
|00001770| 69 6e 67 20 0d 0a 00 20 | 20 20 20 65 71 75 61 74 |ing ... | equat|
|00001780| 69 6f 6e 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |ion.....|.. |
|00001790| 20 20 20 11 33 79 20 11 | 31 2d 20 11 33 79 20 20 | .3y .|1- .3y |
|000017a0| 11 31 3d 20 11 33 6d 11 | 31 28 11 33 78 20 11 31 |.1= .3m.|1(.3x .1|
|000017b0| 2d 20 11 33 78 20 11 31 | 29 20 20 20 20 20 20 20 |- .3x .1|) |
|000017c0| 20 11 32 12 31 50 6f 69 | 6e 74 2d 73 6c 6f 70 65 | .2.1Poi|nt-slope|
|000017d0| 20 66 6f 72 6d 12 30 0d | 0b 00 20 20 20 20 20 20 | form.0.|.. |
|000017e0| 20 20 20 20 20 20 20 20 | 31 20 20 20 20 20 20 20 | |1 |
|000017f0| 20 20 20 31 13 0d 0a 00 | 20 20 20 20 20 20 20 20 | 1....| |
|00001800| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 33 0d 0b | | .13..|
|00001810| 00 20 20 20 20 20 20 20 | 20 20 20 11 33 79 20 11 |. | .3y .|
|00001820| 31 2b 20 32 20 3d 20 2d | 11 34 32 11 31 28 11 33 |1+ 2 = -|.42.1(.3|
|00001830| 78 20 11 31 2d 20 31 29 | 20 20 20 20 20 20 20 20 |x .1- 1)| |
|00001840| 11 32 12 31 53 75 62 73 | 74 69 74 75 74 65 20 6d |.2.1Subs|titute m|
|00001850| 3d 2d 33 2f 32 20 61 6e | 64 20 28 78 20 2c 20 79 |=-3/2 an|d (x , y|
|00001860| 20 29 3d 28 31 2c 20 2d | 32 29 12 30 0d 0b 00 20 | )=(1, -|2).0... |
|00001870| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001880| 20 20 11 31 32 20 20 20 | 20 20 20 20 20 20 20 20 | .12 | |
|00001890| 20 20 20 20 11 32 12 31 | 20 20 20 20 20 20 20 20 | .2.1| |
|000018a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000018b0| 31 20 20 20 31 20 20 20 | 20 20 20 20 20 20 20 20 |1 1 | |
|000018c0| 12 30 13 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |.0......|. |
|000018d0| 20 20 11 31 32 11 33 79 | 20 11 31 2b 20 34 20 3d | .12.3y| .1+ 4 =|
|000018e0| 20 2d 33 11 33 78 20 11 | 31 2b 20 33 20 20 20 20 | -3.3x .|1+ 3 |
|000018f0| 20 20 20 20 20 20 11 32 | 12 31 4d 75 6c 74 69 70 | .2|.1Multip|
|00001900| 6c 79 20 62 6f 74 68 20 | 73 69 64 65 73 20 62 79 |ly both |sides by|
|00001910| 20 32 12 30 11 31 13 0d | 0a 00 0d 0a 00 20 20 20 | 2.0.1..|..... |
|00001920| 20 33 11 33 78 20 11 31 | 2b 20 32 11 33 79 20 11 | 3.3x .1|+ 2.3y .|
|00001930| 31 2b 20 31 20 3d 20 30 | 0d 0a 00 0d 0b 00 62 29 |1+ 1 = 0|......b)|
|00001940| 20 20 54 68 65 20 6c 69 | 6e 65 20 74 68 61 74 20 | The li|ne that |
|00001950| 69 73 20 70 65 72 70 65 | 6e 64 69 63 75 6c 61 72 |is perpe|ndicular|
|00001960| 20 74 6f 20 74 68 65 20 | 67 69 76 65 6e 20 6c 69 | to the |given li|
|00001970| 6e 65 20 6d 75 73 74 20 | 68 61 76 65 20 61 20 73 |ne must |have a s|
|00001980| 6c 6f 70 65 20 6f 66 0d | 0a 00 20 20 20 20 11 33 |lope of.|.. .3|
|00001990| 6d 20 11 31 3d 20 32 2f | 33 20 28 74 68 65 20 6e |m .1= 2/|3 (the n|
|000019a0| 65 67 61 74 69 76 65 20 | 72 65 63 69 70 72 6f 63 |egative |reciproc|
|000019b0| 61 6c 20 6f 66 20 2d 33 | 2f 32 29 2e 13 0d 0a 00 |al of -3|/2).....|
|000019c0| 20 20 20 20 54 68 65 72 | 65 66 6f 72 65 2c 20 75 | Ther|efore, u|
|000019d0| 73 69 6e 67 20 74 68 65 | 20 70 6f 69 6e 74 20 28 |sing the| point (|
|000019e0| 31 2c 20 2d 32 29 20 61 | 6e 64 20 11 33 6d 20 11 |1, -2) a|nd .3m .|
|000019f0| 31 3d 20 32 2f 33 2c 20 | 77 65 20 6f 62 74 61 69 |1= 2/3, |we obtai|
|00001a00| 6e 20 74 68 65 20 66 6f | 6c 6c 6f 77 69 6e 67 20 |n the fo|llowing |
|00001a10| 0d 0a 00 20 20 20 20 65 | 71 75 61 74 69 6f 6e 2e |... e|quation.|
|00001a20| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|00001a30| 11 33 79 20 11 31 2d 20 | 11 33 79 20 20 11 31 3d |.3y .1- |.3y .1=|
|00001a40| 20 11 33 6d 11 31 28 11 | 33 78 20 11 31 2d 20 11 | .3m.1(.|3x .1- .|
|00001a50| 33 78 20 11 31 29 20 20 | 20 20 20 20 20 20 11 32 |3x .1) | .2|
|00001a60| 12 31 50 6f 69 6e 74 2d | 73 6c 6f 70 65 20 66 6f |.1Point-|slope fo|
|00001a70| 72 6d 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |rm.0... | |
|00001a80| 20 20 20 20 20 20 31 20 | 20 20 20 20 20 20 20 20 | 1 | |
|00001a90| 20 31 13 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 | 1.... | |
|00001aa0| 20 20 20 20 20 20 20 20 | 20 11 31 32 0d 0b 00 20 | | .12... |
|00001ab0| 20 20 20 20 20 20 20 20 | 20 20 11 33 79 20 11 31 | | .3y .1|
|00001ac0| 2b 20 32 20 3d 20 11 34 | 32 11 31 28 11 33 78 20 |+ 2 = .4|2.1(.3x |
|00001ad0| 11 31 2d 20 31 29 20 20 | 20 20 20 20 20 20 20 11 |.1- 1) | .|
|00001ae0| 32 12 31 53 75 62 73 74 | 69 74 75 74 65 20 6d 3d |2.1Subst|itute m=|
|00001af0| 32 2f 33 20 61 6e 64 20 | 28 78 20 2c 20 79 20 29 |2/3 and |(x , y )|
|00001b00| 3d 28 31 2c 20 2d 32 29 | 11 31 12 30 0d 0b 00 20 |=(1, -2)|.1.0... |
|00001b10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b20| 20 20 33 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 3 | |
|00001b30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b40| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 31 20 | | .2.11 |
|00001b50| 20 20 31 20 20 20 20 20 | 20 20 20 20 12 30 13 0d | 1 | .0..|
|00001b60| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 11 |..... | .|
|00001b70| 31 33 11 33 79 20 11 31 | 2b 20 36 20 3d 20 32 11 |13.3y .1|+ 6 = 2.|
|00001b80| 33 78 20 11 31 2d 20 32 | 20 20 20 20 20 20 20 20 |3x .1- 2| |
|00001b90| 20 20 20 11 32 12 31 4d | 75 6c 74 69 70 6c 79 20 | .2.1M|ultiply |
|00001ba0| 62 6f 74 68 20 73 69 64 | 65 73 20 62 79 20 33 12 |both sid|es by 3.|
|00001bb0| 30 11 31 13 0d 0a 00 0d | 0a 00 20 20 20 20 2d 32 |0.1.....|.. -2|
|00001bc0| 11 33 78 20 11 31 2b 20 | 33 11 33 79 20 11 31 2b |.3x .1+ |3.3y .1+|
|00001bd0| 20 38 20 3d 20 30 0d 0a | 00 53 65 63 74 69 6f 6e | 8 = 0..|.Section|
|00001be0| 20 32 2e 31 20 20 4c 69 | 6e 65 73 20 69 6e 20 74 | 2.1 Li|nes in t|
|00001bf0| 68 65 20 50 6c 61 6e 65 | 0d 0b 00 41 20 73 61 6c |he Plane|...A sal|
|00001c00| 65 73 20 72 65 70 72 65 | 73 65 6e 74 61 74 69 76 |es repre|sentativ|
|00001c10| 65 20 72 65 63 65 69 76 | 65 73 20 61 20 73 61 6c |e receiv|es a sal|
|00001c20| 61 72 79 20 6f 66 20 24 | 31 38 30 30 20 70 65 72 |ary of $|1800 per|
|00001c30| 20 6d 6f 6e 74 68 20 70 | 6c 75 73 20 61 20 63 6f | month p|lus a co|
|00001c40| 6d 6d 69 73 73 69 6f 6e | 0d 0a 00 6f 66 20 32 2e |mmission|...of 2.|
|00001c50| 35 25 20 6f 66 20 74 68 | 65 20 74 6f 74 61 6c 20 |5% of th|e total |
|00001c60| 6d 6f 6e 74 68 6c 79 20 | 73 61 6c 65 73 2e 20 20 |monthly |sales. |
|00001c70| 57 72 69 74 65 20 61 20 | 6c 69 6e 65 61 72 20 65 |Write a |linear e|
|00001c80| 71 75 61 74 69 6f 6e 20 | 67 69 76 69 6e 67 20 74 |quation |giving t|
|00001c90| 68 65 20 77 61 67 65 73 | 0d 0a 00 11 33 57 20 11 |he wages|....3W .|
|00001ca0| 31 69 6e 20 74 65 72 6d | 73 20 6f 66 20 74 68 65 |1in term|s of the|
|00001cb0| 20 73 61 6c 65 73 20 11 | 33 53 11 31 2e 0d 0a 00 | sales .|3S.1....|
|00001cc0| 0d 0b 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|00001cd0| 0d 0a 00 46 69 72 73 74 | 2c 20 77 65 20 77 72 69 |...First|, we wri|
|00001ce0| 74 65 20 61 20 76 65 72 | 62 61 6c 20 6d 6f 64 65 |te a ver|bal mode|
|00001cf0| 6c 20 66 6f 72 20 74 68 | 65 20 73 69 74 75 61 74 |l for th|e situat|
|00001d00| 69 6f 6e 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |ion.....|.. |
|00001d10| 20 20 20 20 20 20 20 20 | 20 20 57 61 67 65 73 20 | | Wages |
|00001d20| 3d 20 24 31 38 30 30 20 | 2b 20 32 2e 35 25 20 6f |= $1800 |+ 2.5% o|
|00001d30| 66 20 53 61 6c 65 73 13 | 0d 0a 00 0d 0b 00 55 73 |f Sales.|......Us|
|00001d40| 69 6e 67 20 74 68 65 20 | 76 61 72 69 61 62 6c 65 |ing the |variable|
|00001d50| 73 20 73 75 67 67 65 73 | 74 65 64 20 61 62 6f 76 |s sugges|ted abov|
|00001d60| 65 2c 20 74 68 69 73 20 | 76 65 72 62 61 6c 20 6d |e, this |verbal m|
|00001d70| 6f 64 65 6c 20 62 65 63 | 6f 6d 65 73 0d 0a 00 0d |odel bec|omes....|
|00001d80| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001d90| 20 20 20 20 20 20 11 33 | 57 20 11 31 3d 20 31 38 | .3|W .1= 18|
|00001da0| 30 30 20 2b 20 30 2e 30 | 32 35 11 33 53 20 11 31 |00 + 0.0|25.3S .1|
|00001db0| 2e 0d 0a 00 53 65 63 74 | 69 6f 6e 20 32 2e 31 20 |....Sect|ion 2.1 |
|00001dc0| 20 4c 69 6e 65 73 20 69 | 6e 20 74 68 65 20 50 6c | Lines i|n the Pl|
|00001dd0| 61 6e 65 0d 0b 00 46 69 | 6e 64 20 74 68 72 65 65 |ane...Fi|nd three|
|00001de0| 20 61 64 64 69 74 69 6f | 6e 61 6c 20 70 6f 69 6e | additio|nal poin|
|00001df0| 74 73 20 6f 6e 20 74 68 | 65 20 6c 69 6e 65 20 74 |ts on th|e line t|
|00001e00| 68 61 74 20 70 61 73 73 | 65 73 20 74 68 72 6f 75 |hat pass|es throu|
|00001e10| 67 68 20 28 2d 32 2c 20 | 33 29 20 77 69 74 68 20 |gh (-2, |3) with |
|00001e20| 61 20 0d 0a 00 73 6c 6f | 70 65 20 6f 66 20 11 33 |a ...slo|pe of .3|
|00001e30| 6d 20 11 31 3d 20 30 2e | 0d 0a 00 0d 0a 00 13 12 |m .1= 0.|........|
|00001e40| 31 53 4f 4c 55 54 49 4f | 4e 12 30 0d 0a 00 0d 0b |1SOLUTIO|N.0.....|
|00001e50| 00 53 69 6e 63 65 20 74 | 68 65 20 73 6c 6f 70 65 |.Since t|he slope|
|00001e60| 20 69 73 20 7a 65 72 6f | 2c 20 77 65 20 6b 6e 6f | is zero|, we kno|
|00001e70| 77 20 74 68 61 74 20 74 | 68 65 20 6c 69 6e 65 20 |w that t|he line |
|00001e80| 69 73 20 68 6f 72 69 7a | 6f 6e 74 61 6c 2e 13 0d |is horiz|ontal...|
|00001e90| 0a 00 0d 0b 00 54 68 69 | 73 20 69 6e 64 69 63 61 |.....Thi|s indica|
|00001ea0| 74 65 73 20 74 68 61 74 | 20 74 68 65 20 11 33 79 |tes that| the .3y|
|00001eb0| 11 31 2d 63 6f 6f 72 64 | 69 6e 61 74 65 20 6f 66 |.1-coord|inate of|
|00001ec0| 20 65 76 65 72 79 20 70 | 6f 69 6e 74 20 6f 6e 20 | every p|oint on |
|00001ed0| 74 68 65 20 6c 69 6e 65 | 20 69 73 20 11 33 79 20 |the line| is .3y |
|00001ee0| 11 31 3d 20 33 2e 13 0d | 0a 00 0d 0b 00 54 68 65 |.1= 3...|.....The|
|00001ef0| 72 65 66 6f 72 65 2c 20 | 77 65 20 63 61 6e 20 6c |refore, |we can l|
|00001f00| 69 73 74 20 6d 61 6e 79 | 20 64 69 66 66 65 72 65 |ist many| differe|
|00001f10| 6e 74 20 70 6f 69 6e 74 | 73 20 6f 6e 20 74 68 65 |nt point|s on the|
|00001f20| 20 6c 69 6e 65 20 62 79 | 20 73 69 6d 70 6c 79 20 | line by| simply |
|00001f30| 63 68 61 6e 67 69 6e 67 | 20 0d 0a 00 74 68 65 20 |changing| ...the |
|00001f40| 11 33 78 11 31 2d 63 6f | 6f 72 64 69 6e 61 74 65 |.3x.1-co|ordinate|
|00001f50| 20 6f 66 20 74 68 65 20 | 67 69 76 65 6e 20 70 6f | of the |given po|
|00001f60| 69 6e 74 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |int.....|.. |
|00001f70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f80| 28 2d 31 2c 20 33 29 20 | 20 20 20 20 28 30 2c 20 |(-1, 3) | (0, |
|00001f90| 33 29 20 20 20 20 20 28 | 32 2c 20 33 29 0d 0a 00 |3) (|2, 3)...|
|00001fa0| 53 65 63 74 69 6f 6e 20 | 32 2e 31 20 20 4c 69 6e |Section |2.1 Lin|
|00001fb0| 65 73 20 69 6e 20 74 68 | 65 20 50 6c 61 6e 65 0d |es in th|e Plane.|
|00001fc0| 0b 00 44 65 74 65 72 6d | 69 6e 65 20 74 68 65 20 |..Determ|ine the |
|00001fd0| 73 6c 6f 70 65 20 61 6e | 64 20 11 33 79 11 31 2d |slope an|d .3y.1-|
|00001fe0| 69 6e 74 65 72 63 65 70 | 74 20 6f 66 20 74 68 65 |intercep|t of the|
|00001ff0| 20 6c 69 6e 65 20 67 69 | 76 65 6e 20 62 79 20 11 | line gi|ven by .|
|00002000| 33 79 20 11 31 2b 20 32 | 20 3d 20 30 2e 20 20 54 |3y .1+ 2| = 0. T|
|00002010| 68 65 6e 0d 0a 00 73 6b | 65 74 63 68 20 74 68 65 |hen...sk|etch the|
|00002020| 20 67 72 61 70 68 20 6f | 66 20 74 68 65 20 6c 69 | graph o|f the li|
|00002030| 6e 65 2e 0d 0a 00 0d 0b | 00 13 12 31 53 4f 4c 55 |ne......|...1SOLU|
|00002040| 54 49 4f 4e 12 30 0d 0a | 00 4f 75 72 20 66 69 72 |TION.0..|.Our fir|
|00002050| 73 74 20 73 74 65 70 20 | 69 73 20 74 6f 20 77 72 |st step |is to wr|
|00002060| 69 74 65 20 74 68 65 20 | 65 71 75 61 74 69 6f 6e |ite the |equation|
|00002070| 20 69 6e 20 73 6c 6f 70 | 65 2d 69 6e 74 65 72 63 | in slop|e-interc|
|00002080| 65 70 74 20 66 6f 72 6d | 2e 0d 0a 00 0d 0b 00 20 |ept form|....... |
|00002090| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000020a0| 20 20 20 20 20 11 33 79 | 20 11 31 2b 20 32 20 3d | .3y| .1+ 2 =|
|000020b0| 20 30 20 20 20 20 20 20 | 20 20 20 20 20 12 31 11 | 0 | .1.|
|000020c0| 32 47 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 11 |2Given e|quation.|
|000020d0| 31 12 30 13 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |1.0.... | |
|000020e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000020f0| 20 11 33 79 20 11 31 3d | 20 2d 32 20 20 20 20 20 | .3y .1=| -2 |
|00002100| 20 20 20 20 20 12 31 11 | 32 53 6c 6f 70 65 2d 69 | .1.|2Slope-i|
|00002110| 6e 74 65 72 63 65 70 74 | 20 66 6f 72 6d 20 79 3d |ntercept| form y=|
|00002120| 6d 78 2b 62 11 31 12 30 | 13 0d 0a 00 0d 0b 00 46 |mx+b.1.0|.......F|
|00002130| 72 6f 6d 20 74 68 69 73 | 20 66 6f 72 6d 2c 20 77 |rom this| form, w|
|00002140| 65 20 73 65 65 20 74 68 | 61 74 20 74 68 65 20 73 |e see th|at the s|
|00002150| 6c 6f 70 65 20 69 73 20 | 11 33 6d 20 11 31 3d 20 |lope is |.3m .1= |
|00002160| 30 20 61 6e 64 20 74 68 | 65 20 11 33 79 11 31 2d |0 and th|e .3y.1-|
|00002170| 69 6e 74 65 72 63 65 70 | 74 20 69 73 20 0d 0a 00 |intercep|t is ...|
|00002180| 28 30 2c 20 11 33 62 11 | 31 29 20 3d 20 28 30 2c |(0, .3b.|1) = (0,|
|00002190| 20 2d 32 29 2e 13 0d 0a | 00 0d 0b 00 42 65 63 61 | -2)....|....Beca|
|000021a0| 75 73 65 20 74 68 65 20 | 73 6c 6f 70 65 20 69 73 |use the |slope is|
|000021b0| 20 7a 65 72 6f 2c 20 77 | 65 20 6b 6e 6f 77 20 74 | zero, w|e know t|
|000021c0| 68 61 74 20 74 68 65 20 | 6c 69 6e 65 0d 0a 00 69 |hat the |line...i|
|000021d0| 73 20 68 6f 72 69 7a 6f | 6e 74 61 6c 2e 13 0d 0a |s horizo|ntal....|
|000021e0| 00 0d 0b 00 54 68 65 72 | 65 66 6f 72 65 2c 20 74 |....Ther|efore, t|
|000021f0| 6f 20 73 6b 65 74 63 68 | 20 74 68 65 20 67 72 61 |o sketch| the gra|
|00002200| 70 68 20 6f 66 20 74 68 | 65 20 6c 69 6e 65 20 77 |ph of th|e line w|
|00002210| 65 0d 0a 00 73 69 6d 70 | 6c 79 20 64 72 61 77 20 |e...simp|ly draw |
|00002220| 61 20 68 6f 72 69 7a 6f | 6e 74 61 6c 20 6c 69 6e |a horizo|ntal lin|
|00002230| 65 20 74 68 72 6f 75 67 | 68 20 74 68 65 20 70 6f |e throug|h the po|
|00002240| 69 6e 74 0d 0a 00 28 30 | 2c 20 2d 32 29 20 61 73 |int...(0|, -2) as|
|00002250| 20 73 68 6f 77 6e 20 61 | 74 20 74 68 65 20 72 69 | shown a|t the ri|
|00002260| 67 68 74 2e 20 20 20 20 | 20 20 20 20 20 20 20 20 |ght. | |
|00002270| 20 20 20 20 20 20 20 20 | 20 14 6b 33 2d 33 2d 35 | | .k3-3-5|
|00002280| 2e 69 14 35 32 14 32 32 | 14 34 30 14 38 14 0d 0a |.i.52.22|.40.8...|
|00002290| 00 53 65 63 74 69 6f 6e | 20 32 2e 31 20 20 4c 69 |.Section| 2.1 Li|
|000022a0| 6e 65 73 20 69 6e 20 74 | 68 65 20 50 6c 61 6e 65 |nes in t|he Plane|
|000022b0| 0d 0b 00 44 65 74 65 72 | 6d 69 6e 65 20 74 68 65 |...Deter|mine the|
|000022c0| 20 73 6c 6f 70 65 20 61 | 6e 64 20 11 33 79 11 31 | slope a|nd .3y.1|
|000022d0| 2d 69 6e 74 65 72 63 65 | 70 74 20 6f 66 20 74 68 |-interce|pt of th|
|000022e0| 65 20 6c 69 6e 65 20 67 | 69 76 65 6e 20 62 79 20 |e line g|iven by |
|000022f0| 33 11 33 78 20 11 31 2b | 20 37 11 33 79 20 11 31 |3.3x .1+| 7.3y .1|
|00002300| 2d 20 37 20 3d 20 30 2e | 0d 0a 00 54 68 65 6e 20 |- 7 = 0.|...Then |
|00002310| 73 6b 65 74 63 68 20 61 | 20 67 72 61 70 68 20 6f |sketch a| graph o|
|00002320| 66 20 74 68 65 20 6c 69 | 6e 65 2e 0d 0a 00 13 12 |f the li|ne......|
|00002330| 31 53 4f 4c 55 54 49 4f | 4e 12 30 0d 0a 00 4f 75 |1SOLUTIO|N.0...Ou|
|00002340| 72 20 66 69 72 73 74 20 | 73 74 65 70 20 69 73 20 |r first |step is |
|00002350| 74 6f 20 77 72 69 74 65 | 20 74 68 65 20 65 71 75 |to write| the equ|
|00002360| 61 74 69 6f 6e 20 69 6e | 20 73 6c 6f 70 65 2d 69 |ation in| slope-i|
|00002370| 6e 74 65 72 63 65 70 74 | 20 66 6f 72 6d 2e 0d 0a |ntercept| form...|
|00002380| 00 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00002390| 20 33 11 33 78 20 11 31 | 2b 20 37 11 33 79 20 11 | 3.3x .1|+ 7.3y .|
|000023a0| 31 2d 20 37 20 3d 20 30 | 20 20 20 20 20 20 20 20 |1- 7 = 0| |
|000023b0| 20 20 20 20 20 20 12 31 | 11 32 47 69 76 65 6e 20 | .1|.2Given |
|000023c0| 65 71 75 61 74 69 6f 6e | 11 31 12 30 13 0d 0a 00 |equation|.1.0....|
|000023d0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000023e0| 20 20 20 20 20 20 20 20 | 20 37 11 33 79 20 11 31 | | 7.3y .1|
|000023f0| 3d 20 2d 33 11 33 78 20 | 11 31 2b 20 37 20 20 20 |= -3.3x |.1+ 7 |
|00002400| 20 20 20 20 20 12 31 11 | 32 53 75 62 74 72 61 63 | .1.|2Subtrac|
|00002410| 74 20 33 78 20 61 6e 64 | 20 61 64 64 20 37 20 74 |t 3x and| add 7 t|
|00002420| 6f 20 62 6f 74 68 20 73 | 69 64 65 73 11 31 12 30 |o both s|ides.1.0|
|00002430| 13 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00002440| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002450| 33 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |3... | |
|00002460| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 79 20 11 | | .3y .|
|00002470| 31 3d 20 2d 11 34 32 11 | 33 78 20 11 31 2b 20 31 |1= -.42.|3x .1+ 1|
|00002480| 20 20 20 20 20 20 20 20 | 12 31 11 32 53 6c 6f 70 | |.1.2Slop|
|00002490| 65 2d 69 6e 74 65 72 63 | 65 70 74 20 66 6f 72 6d |e-interc|ept form|
|000024a0| 20 79 3d 6d 78 2b 62 11 | 31 12 30 0d 0b 00 20 20 | y=mx+b.|1.0... |
|000024b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024c0| 20 20 20 20 20 20 20 20 | 20 20 37 20 20 20 20 20 | | 7 |
|000024d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024f0| 20 20 20 20 20 20 20 20 | 20 13 0d 0a 00 46 72 6f | | ....Fro|
|00002500| 6d 20 74 68 69 73 20 66 | 6f 72 6d 2c 20 77 65 20 |m this f|orm, we |
|00002510| 73 65 65 20 74 68 61 74 | 20 74 68 65 20 73 6c 6f |see that| the slo|
|00002520| 70 65 20 69 73 20 11 33 | 6d 20 11 31 3d 20 2d 33 |pe is .3|m .1= -3|
|00002530| 2f 37 0d 0a 00 61 6e 64 | 20 74 68 65 20 11 33 79 |/7...and| the .3y|
|00002540| 11 31 2d 69 6e 74 65 72 | 63 65 70 74 20 69 73 20 |.1-inter|cept is |
|00002550| 28 30 2c 20 11 33 62 11 | 31 29 20 3d 20 28 30 2c |(0, .3b.|1) = (0,|
|00002560| 20 31 29 2e 13 0d 0a 00 | 54 6f 20 73 6b 65 74 63 | 1).....|To sketc|
|00002570| 68 20 74 68 65 20 6c 69 | 6e 65 2c 20 77 65 20 66 |h the li|ne, we f|
|00002580| 69 72 73 74 20 70 6c 6f | 74 20 74 68 65 20 11 33 |irst plo|t the .3|
|00002590| 79 11 31 2d 69 6e 74 65 | 72 63 65 70 74 11 32 2e |y.1-inte|rcept.2.|
|000025a0| 20 20 11 31 14 6b 33 2d | 33 2d 36 61 2e 69 14 35 | .1.k3-|3-6a.i.5|
|000025b0| 33 14 32 32 14 34 30 14 | 38 14 13 0d 0a 00 54 68 |3.22.40.|8.....Th|
|000025c0| 65 6e 2c 20 75 73 69 6e | 67 20 74 68 65 20 73 6c |en, usin|g the sl|
|000025d0| 6f 70 65 20 11 33 6d 20 | 11 31 3d 20 2d 33 2f 37 |ope .3m |.1= -3/7|
|000025e0| 2c 20 77 65 20 6c 6f 63 | 61 74 65 20 61 0d 0a 00 |, we loc|ate a...|
|000025f0| 73 65 63 6f 6e 64 20 70 | 6f 69 6e 74 20 6f 6e 20 |second p|oint on |
|00002600| 74 68 65 20 6c 69 6e 65 | 20 62 79 20 6d 6f 76 69 |the line| by movi|
|00002610| 6e 67 20 73 65 76 65 6e | 20 75 6e 69 74 73 0d 0a |ng seven| units..|
|00002620| 00 74 6f 20 74 68 65 20 | 72 69 67 68 74 20 61 6e |.to the |right an|
|00002630| 64 20 74 68 72 65 65 20 | 75 6e 69 74 73 20 64 6f |d three |units do|
|00002640| 77 6e 2e 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |wn. | |
|00002650| 20 20 20 20 20 14 6b 33 | 2d 33 2d 36 62 2e 69 14 | .k3|-3-6b.i.|
|00002660| 35 33 14 32 32 14 34 30 | 14 38 14 13 0d 0a 00 43 |53.22.40|.8.....C|
|00002670| 6f 6e 6e 65 63 74 69 6e | 67 20 74 68 65 20 74 77 |onnectin|g the tw|
|00002680| 6f 20 70 6f 69 6e 74 73 | 20 67 69 76 65 73 20 75 |o points| gives u|
|00002690| 73 20 74 68 65 20 67 72 | 61 70 68 0d 0a 00 6f 66 |s the gr|aph...of|
|000026a0| 20 74 68 65 20 6c 69 6e | 65 20 61 73 20 73 68 6f | the lin|e as sho|
|000026b0| 77 6e 20 61 74 20 74 68 | 65 20 72 69 67 68 74 2e |wn at th|e right.|
|000026c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026d0| 20 20 14 6b 33 2d 33 2d | 36 63 2e 69 14 35 33 14 | .k3-3-|6c.i.53.|
|000026e0| 32 32 14 34 30 14 38 14 | 0d 0a 00 53 65 63 74 69 |22.40.8.|...Secti|
|000026f0| 6f 6e 20 32 2e 31 20 20 | 4c 69 6e 65 73 20 69 6e |on 2.1 |Lines in|
|00002700| 20 74 68 65 20 50 6c 61 | 6e 65 0d 0b 00 46 69 6e | the Pla|ne...Fin|
|00002710| 64 20 61 6e 20 65 71 75 | 61 74 69 6f 6e 20 6f 66 |d an equ|ation of|
|00002720| 20 74 68 65 20 6c 69 6e | 65 20 70 61 73 73 69 6e | the lin|e passin|
|00002730| 67 20 74 68 72 6f 75 67 | 68 20 74 68 65 20 70 6f |g throug|h the po|
|00002740| 69 6e 74 73 20 28 32 2c | 20 34 29 20 61 6e 64 20 |ints (2,| 4) and |
|00002750| 28 31 2c 20 36 29 2e 0d | 0a 00 0d 0a 00 13 12 31 |(1, 6)..|.......1|
|00002760| 53 4f 4c 55 54 49 4f 4e | 12 30 0d 0a 00 0d 0b 00 |SOLUTION|.0......|
|00002770| 54 68 65 20 73 6c 6f 70 | 65 20 6f 66 20 74 68 65 |The slop|e of the|
|00002780| 20 6c 69 6e 65 20 70 61 | 73 73 69 6e 67 20 74 68 | line pa|ssing th|
|00002790| 72 6f 75 67 68 20 74 68 | 65 73 65 20 74 77 6f 20 |rough th|ese two |
|000027a0| 70 6f 69 6e 74 73 20 69 | 73 0d 0a 00 20 20 20 20 |points i|s... |
|000027b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000027c0| 20 20 20 20 20 36 20 2d | 20 34 20 20 20 20 32 0d | 6 -| 4 2.|
|000027d0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000027e0| 20 20 20 20 20 20 20 11 | 33 6d 20 11 31 3d 20 11 | .|3m .1= .|
|000027f0| 34 32 32 32 32 32 20 11 | 31 3d 20 11 34 32 32 20 |422222 .|1= .422 |
|00002800| 11 31 3d 20 2d 32 20 2e | 0d 0b 00 20 20 20 20 20 |.1= -2 .|... |
|00002810| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002820| 20 20 20 20 31 20 2d 20 | 32 20 20 20 2d 31 20 20 | 1 - |2 -1 |
|00002830| 20 20 20 20 20 13 0d 0a | 00 4e 6f 77 2c 20 75 73 | ...|.Now, us|
|00002840| 69 6e 67 20 74 68 65 20 | 70 6f 69 6e 74 2d 73 6c |ing the |point-sl|
|00002850| 6f 70 65 20 66 6f 72 6d | 20 6f 66 20 74 68 65 20 |ope form| of the |
|00002860| 65 71 75 61 74 69 6f 6e | 20 6f 66 20 61 20 6c 69 |equation| of a li|
|00002870| 6e 65 2c 20 77 65 20 6f | 62 74 61 69 6e 20 74 68 |ne, we o|btain th|
|00002880| 65 0d 0a 00 66 6f 6c 6c | 6f 77 69 6e 67 2e 0d 0a |e...foll|owing...|
|00002890| 00 0d 0b 00 20 20 20 20 | 20 11 33 79 20 11 31 2d |.... | .3y .1-|
|000028a0| 20 11 33 79 20 20 11 31 | 3d 20 11 33 6d 11 31 28 | .3y .1|= .3m.1(|
|000028b0| 11 33 78 20 11 31 2d 20 | 11 33 78 20 11 31 29 20 |.3x .1- |.3x .1) |
|000028c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|000028d0| 12 31 50 6f 69 6e 74 2d | 73 6c 6f 70 65 20 66 6f |.1Point-|slope fo|
|000028e0| 72 6d 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |rm.0... | |
|000028f0| 20 31 20 20 20 20 20 20 | 20 20 20 20 31 13 0d 0a | 1 | 1...|
|00002900| 00 0d 0b 00 20 20 20 20 | 20 20 11 33 79 20 11 31 |.... | .3y .1|
|00002910| 2d 20 34 20 3d 20 2d 32 | 28 11 33 78 20 11 31 2d |- 4 = -2|(.3x .1-|
|00002920| 20 32 29 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2) | |
|00002930| 20 20 11 32 12 31 53 75 | 62 73 74 69 74 75 74 65 | .2.1Su|bstitute|
|00002940| 20 6d 3d 2d 32 20 61 6e | 64 20 28 78 20 11 31 2c | m=-2 an|d (x .1,|
|00002950| 20 11 32 79 20 29 3d 28 | 32 2c 20 34 29 12 30 0d | .2y )=(|2, 4).0.|
|00002960| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00002970| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002980| 20 20 20 20 20 20 20 20 | 12 31 20 20 20 20 20 20 | |.1 |
|00002990| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000029a0| 31 20 20 20 31 20 20 20 | 20 20 20 20 20 12 30 13 |1 1 | .0.|
|000029b0| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 11 33 79 20 |...... | .3y |
|000029c0| 11 31 2d 20 34 20 3d 20 | 2d 32 11 33 78 20 11 31 |.1- 4 = |-2.3x .1|
|000029d0| 2b 20 34 13 0d 0a 00 0d | 0a 00 20 20 20 20 20 20 |+ 4.....|.. |
|000029e0| 20 20 20 20 11 33 79 20 | 11 31 3d 20 2d 32 11 33 | .3y |.1= -2.3|
|000029f0| 78 20 11 31 2b 20 38 20 | 20 20 20 20 20 20 20 20 |x .1+ 8 | |
|00002a00| 20 20 20 20 20 20 20 20 | 11 32 12 31 53 6c 6f 70 | |.2.1Slop|
|00002a10| 65 2d 69 6e 74 65 72 63 | 65 70 74 20 66 6f 72 6d |e-interc|ept form|
|00002a20| 11 31 12 30 0d 0a 00 53 | 65 63 74 69 6f 6e 20 32 |.1.0...S|ection 2|
|00002a30| 2e 31 20 20 4c 69 6e 65 | 73 20 69 6e 20 74 68 65 |.1 Line|s in the|
|00002a40| 20 50 6c 61 6e 65 0d 0b | 00 46 69 6e 64 20 74 68 | Plane..|.Find th|
|00002a50| 65 20 67 65 6e 65 72 61 | 6c 20 66 6f 72 6d 20 6f |e genera|l form o|
|00002a60| 66 20 74 68 65 20 65 71 | 75 61 74 69 6f 6e 20 6f |f the eq|uation o|
|00002a70| 66 20 74 68 65 20 6c 69 | 6e 65 20 74 68 61 74 20 |f the li|ne that |
|00002a80| 70 61 73 73 65 73 20 74 | 68 72 6f 75 67 68 20 74 |passes t|hrough t|
|00002a90| 68 65 0d 0a 00 70 6f 69 | 6e 74 73 20 28 2d 33 2c |he...poi|nts (-3,|
|00002aa0| 20 34 29 20 61 6e 64 20 | 28 31 36 2c 20 34 29 2e | 4) and |(16, 4).|
|00002ab0| 0d 0a 00 0d 0b 00 13 12 | 31 53 4f 4c 55 54 49 4f |........|1SOLUTIO|
|00002ac0| 4e 12 30 0d 0a 00 49 66 | 20 77 65 20 6c 65 74 20 |N.0...If| we let |
|00002ad0| 28 11 33 78 20 11 31 2c | 20 11 33 79 20 11 31 29 |(.3x .1,| .3y .1)|
|00002ae0| 20 3d 20 28 2d 33 2c 20 | 34 29 20 61 6e 64 20 28 | = (-3, |4) and (|
|00002af0| 11 33 78 20 11 31 2c 20 | 11 33 79 20 11 31 29 20 |.3x .1, |.3y .1) |
|00002b00| 3d 20 28 31 36 2c 20 34 | 29 2c 20 74 68 65 6e 20 |= (16, 4|), then |
|00002b10| 77 65 20 63 61 6e 20 61 | 70 70 6c 79 20 74 68 65 |we can a|pply the|
|00002b20| 20 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 | ... | |
|00002b30| 11 32 31 20 20 20 31 20 | 20 20 20 20 20 20 20 20 |.21 1 | |
|00002b40| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 32 0d 0a | | 2 2..|
|00002b50| 00 11 31 66 6f 72 6d 75 | 6c 61 20 66 6f 72 20 74 |..1formu|la for t|
|00002b60| 68 65 20 73 6c 6f 70 65 | 20 6f 66 20 61 20 6c 69 |he slope| of a li|
|00002b70| 6e 65 20 61 73 20 66 6f | 6c 6c 6f 77 73 2e 0d 0a |ne as fo|llows...|
|00002b80| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00002b90| 20 20 20 20 20 20 20 20 | 11 33 79 20 20 11 31 2d | |.3y .1-|
|00002ba0| 20 11 33 79 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | .3y... | |
|00002bb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00002bc0| 32 32 20 20 20 20 31 20 | 20 20 20 20 11 31 34 20 |22 1 | .14 |
|00002bd0| 2d 20 34 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |- 4... | |
|00002be0| 20 20 20 20 20 20 20 20 | 20 11 33 6d 20 11 31 3d | | .3m .1=|
|00002bf0| 20 11 34 32 32 32 32 32 | 32 32 20 11 31 3d 20 11 | .422222|22 .1= .|
|00002c00| 34 32 32 32 32 32 32 32 | 32 32 20 11 31 3d 20 30 |42222222|22 .1= 0|
|00002c10| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00002c20| 20 20 20 20 20 20 20 20 | 20 20 11 33 78 20 20 11 | | .3x .|
|00002c30| 31 2d 20 11 33 78 20 20 | 20 20 11 31 31 36 20 2d |1- .3x | .116 -|
|00002c40| 20 28 2d 33 29 0d 0b 00 | 20 20 20 20 20 20 20 20 | (-3)...| |
|00002c50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002c60| 11 32 32 20 20 20 20 31 | 20 20 20 20 20 20 20 20 |.22 1| |
|00002c70| 20 20 20 20 20 20 20 20 | 20 20 11 31 13 0d 0a 00 | | .1....|
|00002c80| 42 65 63 61 75 73 65 20 | 74 68 65 20 73 6c 6f 70 |Because |the slop|
|00002c90| 65 20 69 73 20 7a 65 72 | 6f 2c 20 77 65 20 6b 6e |e is zer|o, we kn|
|00002ca0| 6f 77 20 74 68 61 74 20 | 74 68 65 20 6c 69 6e 65 |ow that |the line|
|00002cb0| 20 69 73 20 68 6f 72 69 | 7a 6f 6e 74 61 6c 2e 13 | is hori|zontal..|
|00002cc0| 0d 0a 00 0d 0b 00 46 72 | 6f 6d 20 74 68 65 20 70 |......Fr|om the p|
|00002cd0| 6f 69 6e 74 73 20 77 65 | 20 73 65 65 20 74 68 61 |oints we| see tha|
|00002ce0| 74 20 74 68 65 20 11 33 | 79 11 31 2d 63 6f 6f 72 |t the .3|y.1-coor|
|00002cf0| 64 69 6e 61 74 65 20 6f | 66 20 65 61 63 68 20 70 |dinate o|f each p|
|00002d00| 6f 69 6e 74 20 6f 6e 20 | 74 68 65 20 6c 69 6e 65 |oint on |the line|
|00002d10| 20 69 73 20 34 2e 13 0d | 0a 00 0d 0b 00 54 68 65 | is 4...|.....The|
|00002d20| 72 65 66 6f 72 65 2c 20 | 74 68 65 20 65 71 75 61 |refore, |the equa|
|00002d30| 74 69 6f 6e 20 6f 66 20 | 74 68 65 20 6c 69 6e 65 |tion of |the line|
|00002d40| 20 69 73 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 | is.....|. |
|00002d50| 20 20 20 11 33 79 20 11 | 31 3d 20 34 20 20 20 20 | .3y .|1= 4 |
|00002d60| 20 6f 72 20 69 6e 20 67 | 65 6e 65 72 61 6c 20 66 | or in g|eneral f|
|00002d70| 6f 72 6d 20 20 20 20 20 | 11 33 79 20 11 31 2d 20 |orm |.3y .1- |
|00002d80| 34 20 3d 20 30 2e 0d 0a | 00 53 65 63 74 69 6f 6e |4 = 0...|.Section|
|00002d90| 20 32 2e 31 20 20 4c 69 | 6e 65 73 20 69 6e 20 74 | 2.1 Li|nes in t|
|00002da0| 68 65 20 50 6c 61 6e 65 | 0d 0b 00 46 69 6e 64 20 |he Plane|...Find |
|00002db0| 61 6e 20 65 71 75 61 74 | 69 6f 6e 20 6f 66 20 74 |an equat|ion of t|
|00002dc0| 68 65 20 6c 69 6e 65 20 | 74 68 61 74 20 70 61 73 |he line |that pas|
|00002dd0| 73 65 73 20 74 68 72 6f | 75 67 68 20 74 68 65 20 |ses thro|ugh the |
|00002de0| 70 6f 69 6e 74 20 28 30 | 2c 20 33 29 20 61 6e 64 |point (0|, 3) and|
|00002df0| 20 68 61 73 20 61 6e 0d | 0a 00 75 6e 64 65 66 69 | has an.|..undefi|
|00002e00| 6e 65 64 20 73 6c 6f 70 | 65 2e 0d 0a 00 0d 0b 00 |ned slop|e.......|
|00002e10| 13 12 31 53 4f 4c 55 54 | 49 4f 4e 12 30 0d 0a 00 |..1SOLUT|ION.0...|
|00002e20| 42 65 63 61 75 73 65 20 | 74 68 65 20 73 6c 6f 70 |Because |the slop|
|00002e30| 65 20 69 73 20 75 6e 64 | 65 66 69 6e 65 64 2c 20 |e is und|efined, |
|00002e40| 77 65 20 6b 6e 6f 77 20 | 74 68 61 74 20 74 68 65 |we know |that the|
|00002e50| 20 6c 69 6e 65 20 69 73 | 20 76 65 72 74 69 63 61 | line is| vertica|
|00002e60| 6c 2e 13 0d 0a 00 0d 0b | 00 54 68 69 73 20 69 6e |l.......|.This in|
|00002e70| 64 69 63 61 74 65 73 20 | 74 68 61 74 20 74 68 65 |dicates |that the|
|00002e80| 20 11 33 78 11 31 2d 63 | 6f 6f 72 64 69 6e 61 74 | .3x.1-c|oordinat|
|00002e90| 65 20 6f 66 20 65 76 65 | 72 79 20 70 6f 69 6e 74 |e of eve|ry point|
|00002ea0| 20 6f 6e 20 74 68 65 20 | 6c 69 6e 65 20 69 73 20 | on the |line is |
|00002eb0| 74 68 65 20 73 61 6d 65 | 2e 13 0d 0a 00 0d 0b 00 |the same|........|
|00002ec0| 54 68 65 72 65 66 6f 72 | 65 2c 20 74 68 65 20 65 |Therefor|e, the e|
|00002ed0| 71 75 61 74 69 6f 6e 20 | 6f 66 20 74 68 65 20 6c |quation |of the l|
|00002ee0| 69 6e 65 20 69 73 20 11 | 33 78 20 11 31 3d 20 30 |ine is .|3x .1= 0|
|00002ef0| 2e 13 0d 0a 00 0d 0b 00 | 57 68 65 6e 20 77 65 20 |........|When we |
|00002f00| 73 6b 65 74 63 68 20 74 | 68 65 20 67 72 61 70 68 |sketch t|he graph|
|00002f10| 20 6f 66 20 61 20 76 65 | 72 74 69 63 61 6c 20 6c | of a ve|rtical l|
|00002f20| 69 6e 65 0d 0a 00 74 68 | 61 74 20 70 61 73 73 65 |ine...th|at passe|
|00002f30| 73 20 74 68 72 6f 75 67 | 68 20 74 68 65 20 70 6f |s throug|h the po|
|00002f40| 69 6e 74 20 28 30 2c 20 | 33 29 2c 20 77 65 20 73 |int (0, |3), we s|
|00002f50| 65 65 0d 0a 00 74 68 61 | 74 20 74 68 65 20 67 72 |ee...tha|t the gr|
|00002f60| 61 70 68 20 63 6f 69 6e | 63 69 64 65 73 20 77 69 |aph coin|cides wi|
|00002f70| 74 68 20 74 68 65 20 11 | 33 79 11 31 2d 61 78 69 |th the .|3y.1-axi|
|00002f80| 73 20 61 73 0d 0a 00 73 | 68 6f 77 6e 20 69 6e 20 |s as...s|hown in |
|00002f90| 74 68 65 20 66 69 67 75 | 72 65 20 61 74 20 74 68 |the figu|re at th|
|00002fa0| 65 20 72 69 67 68 74 2e | 20 20 20 20 20 20 20 20 |e right.| |
|00002fb0| 20 20 20 20 20 20 20 20 | 20 14 6b 33 2d 33 2d 31 | | .k3-3-1|
|00002fc0| 30 2e 6d 14 35 32 14 31 | 38 14 34 30 14 38 14 0d |0.m.52.1|8.40.8..|
|00002fd0| 0a 00 2f 00 00 00 1f 04 | 00 00 4d 1f 00 00 10 00 |../.....|..M.....|
|00002fe0| 00 00 00 00 00 00 65 32 | 2d 31 00 6d 04 00 00 f9 |......e2|-1.m....|
|00002ff0| 01 00 00 4d 1f 00 00 4e | 04 00 00 00 00 00 00 65 |...M...N|.......e|
|00003000| 32 2d 31 2d 31 00 85 06 | 00 00 d9 03 00 00 4d 1f |2-1-1...|......M.|
|00003010| 00 00 66 06 00 00 00 00 | 00 00 65 32 2d 31 2d 32 |..f.....|..e2-1-2|
|00003020| 00 7d 0a 00 00 26 04 00 | 00 4d 1f 00 00 5e 0a 00 |.}...&..|.M...^..|
|00003030| 00 00 00 00 00 65 32 2d | 31 2d 33 00 c2 0e 00 00 |.....e2-|1-3.....|
|00003040| 63 02 00 00 4d 1f 00 00 | a3 0e 00 00 00 00 00 00 |c...M...|........|
|00003050| 65 32 2d 31 2d 34 00 44 | 11 00 00 cd 03 00 00 4d |e2-1-4.D|.......M|
|00003060| 1f 00 00 25 11 00 00 00 | 00 00 00 65 32 2d 31 2d |...%....|...e2-1-|
|00003070| 35 00 30 15 00 00 a9 06 | 00 00 4d 1f 00 00 11 15 |5.0.....|..M.....|
|00003080| 00 00 00 00 00 00 65 32 | 2d 31 2d 36 00 f8 1b 00 |......e2|-1-6....|
|00003090| 00 bc 01 00 00 4d 1f 00 | 00 d9 1b 00 00 00 00 00 |.....M..|........|
|000030a0| 00 65 32 2d 31 2d 37 00 | d3 1d 00 00 cd 01 00 00 |.e2-1-7.|........|
|000030b0| 4d 1f 00 00 b4 1d 00 00 | 00 00 00 00 69 32 2d 31 |M.......|....i2-1|
|000030c0| 2d 31 00 bf 1f 00 00 d2 | 02 00 00 4d 1f 00 00 a0 |-1......|...M....|
|000030d0| 1f 00 00 00 00 00 00 69 | 32 2d 31 2d 32 00 b0 22 |.......i|2-1-2.."|
|000030e0| 00 00 3b 04 00 00 4d 1f | 00 00 91 22 00 00 00 00 |..;...M.|..."....|
|000030f0| 00 00 69 32 2d 31 2d 33 | 00 0a 27 00 00 1d 03 00 |..i2-1-3|..'.....|
|00003100| 00 4d 1f 00 00 eb 26 00 | 00 00 00 00 00 69 32 2d |.M....&.|.....i2-|
|00003110| 31 2d 34 00 46 2a 00 00 | 43 03 00 00 4d 1f 00 00 |1-4.F*..|C...M...|
|00003120| 27 2a 00 00 00 00 00 00 | 69 32 2d 31 2d 35 00 a8 |'*......|i2-1-5..|
|00003130| 2d 00 00 2a 02 00 00 4d | 1f 00 00 89 2d 00 00 00 |-..*...M|....-...|
|00003140| 00 00 00 69 32 2d 31 2d | 36 00 |...i2-1-|6. |
+--------+-------------------------+-------------------------+--------+--------+